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SIGNIFICANCE AND EXPLANATION

Orthogonal polynomials are used in numerical analysis for interpolation

and quadrature , in the quantum mechanical theory of angular momentum , in

statistics and many other areas. The polynomials introduced in this paper
I

contain all the classical orthogonal polynomials as limits, and so provide

a unified way of deriving some of the properties of the classical polyno—

mials, as well as giving us a more general set of polynomials to use for

applications.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the authors of this report.
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A SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE ThE RACAH

COEFFICIENTS OR 6 - j  SYMBOLS

• Richard Askey W and Ja mes Wilson

1. Introduction. A hypergeometric series has the for m E a~ with a
~ +1/a a rati onal

function of n. A basic hypergecinetric series has a +1/a a rationa l function of qfl

for a fixed q. The standard notation will be used . It is

~~r~~n x~(1.1) 
r~ s b

1
,...,b 8

’ X 

~~ 
(b
1) (b 5) ni

where

(1.2) (a) — a(a + 1 ) ... ( a +n — 1 ) , n — l , 2,..,n

1 n — O

for hypergeo metr ic series and

a1, .  . . t a +1 (a
1

;q) •. .  ( a~~ 1
;q)

(1.3) 
r+l~r b

i s~~ •~
b
r 

— 

~~~~ 

(b
1

;q) .“

with

(1.4) (a;q) — (1 — a) ..
~~ (1 — aq’~~

1
) n 1,2,...

: 1 

—n 
1 

-l : =(l — a q  ) “~~~(l — a q

for basic hypergea mnetric series.

For readers who are unacquainted with basic hypergeo metric ser ies , observe that
a(q ;q) (a)

j im 
Bq~1 (q :q)~~ a

There are reasons for using (a;q) in (1.3) rather than (qa;q) which go beyond a

desire for a notation that is easy to set in type . There are times when we want a”

to be negativ e , and we can only make qa negative by taking a complex . It is

~
1
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possible to do this but unnecessary. Also there are times when we want “a” to be

independent of q. Again it is possible to take a — (log a)/(log q) so that q
a j~

independent of q, but it is unnecessary if we use (a ;q) rather than (q6,q) ~~.

In (12) it was pointed out that

a + a + B + l~ -x , x + ‘r + 6 + 1
(1.5) p ( X ( x ) )  4F 3 

: 1
n + 1 .  B + 6 + 1 . y + 1

(1.6) A (x) — x(x + y + 6 + 1)

is a polynomial of degree n in A Cx) which is orthogonal on x — 0,1, .. . ,N when

a + 1, B + 6 + 1 or y + 3. is —N. This orthogona lity relation is equivalent to

Racab ’s ortho gona lity for functions that are usually called Racah coefficients or 6 - j

V symbols. These polynomial s contain as limiting cases the classical polynomials of

Ja cobi, Laguerre and Herm ite and their discrete analogues which go under the names of

Hahn , Meixner , Krawtchouk and Char lier polynomials. All of these polynomials can be

given as hypergeo mnetric series. Since basic hyperge ostetric extensions of the classical

polynomials have been found [8], [2) it is natural to look for a basic hypergeo metric

extension of (1.5) . The ri ght polynomials to consider are balanced s ° s

—n n+1 —x x+].
ig  , g  ab, q , q  cd

(1.7) p~ (u (x);a s b1 c1d;q) = ( 3c) ) — ; q,q
aq, bdq, cq

where

(1.8) ~m (x) = q~X + q
X+l

od

Since

a (q
_n

;q) (qn+lab,q)g
k k-l 2j+1

V Pn~~~
X
~~ 

— 1 + 
k l  ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~iJ

_:~ 
[1 + q od - q (u (x))1

it is clear that p ( v  (x) ) is a polynomial of degree n in the variable u (x) .

The adjective “balanced” refers to a condition put on the parameters. For basic

hypergeometr ic series it means that the product of the numerator parameters times q

is the product of the denominator parameters . In this case q~~~
”
~~”~abq ’

~~
’1odq abcdq

3.
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2. Orthogonality . Assume that one of ag, cq or ~~q is ~~~~ Then the or thogonality
relation is

N
( 2.1) ~ P~ (u ( x ) ;a ,b ,c, d;q) p ( ~~(x ) ; a ,b ,c,d; q)~~(~ ) — 0 , in n, 0 < m ,n < Nx=O

V
~~ I

where

(cdq;q) (l - cdq~~~~ ) (aq;q) (bdq;q) (cq;q) (abq )~~w(x)  
1— cdq) (cda q; q) (b c~ ;q)~~(dq;q)

Observe that

(q
_x
d
_ l

;q) (qx+l~ .q) = IT Cl - d
1q~~~~ ) (1 - og

X+)+l
)

15-1
— rr (1 + cq2

~~~d~~ — d 1q~u (x ) )
j =O

is a polynomial of degree in in ~i (x). To prove (2.1) for in * n it will suffice

to show that

V 
(2.2) = 

x~O 
~~~~~~~~~~~~, q  (q

_X
~
_ l

;q) (qX+lc.q) w (x) = 0; m < n

The advantage of (2 .2 )  over (2.1) is that the polynomial of degree in Can be attached

to the weight function. Using the definition of p (u (x)) in (2.2) gives

-n n+1 -x x+l k(q ~~~~~~ ab;~~)~~(~ ;~~)~~(~ cd;~~)~~~— 

x—O k=O

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

cdq
2x~~ ) ( 5 q.q) (~~ q;q) (~ q. q)

(q; q) (1 — cdq) (a 1cdq; q) 
~ 

(b
1cq; q~ ~ 

Cdq;q) 
~ 

(abq ) X

-n n+l k+l k+l(q :~~) 1~
(~ ab;~~)~~(aq ;q)~ _~ (bdq ;~~ )~~ _~— L ‘~ —l —lk 0  x k  (~ ;~ )~~(a cd~ ;q)~~(b ~~~~~~~~~~~~~~

k+l 2x+l k im(cq ~~~~~~~~~~~~~~~~~~~~~ — cdq ) (—]. ) q
(d ~ ;~~)~~..~~(1 - cdq)

—3—



— 
q(~~) (_ 1) m ;~ (q fllq) (qfl+lab,q) qk(k+ l) /2  N-k Caq ’;q) (bdQ~~~ Iq)~

k 0  (q ;q)~~(_ l) kq
k (k4m+l) (ab) k x—O (a ’cdq;q)~~~~ 

$

~~~~~~~~~~~~~~~~~~~~~~~~~~ - odq~~
4
~~~

1) mc

- odq) (~~~~k+a+1~

— 
q(~~) (_ 1)m a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— cdq
2k)

~~~ (_j) kq~~k~k

dm k—O 1 (
~

) k
(~~;~~)~~(a ‘cdq;g )~~(b ~~~~~~~~~~~~~~~~~~ — cdq)q (ab )

N—k (cdq 21
~~~ q) 

~ 
(1 — cdq2 2X+l) (5qk+l 

~~ ~ ()~~qk+l q~ ~ 
(cqk

~~~~ q) x q
••1fl_k_l 

)

X

V *+l -3. k+]. -3. k+]. k-m+1 ~ ab
x—O (q;q)~~(]. - cdq ) ( a  cdq ;q)~~(b cq ;q)~~(dq ;~~)~

The sum on x can be evaluated since it is a very well poised 6~ 5 
The required sum is

(2 
a2 , aq, -aq , b, c, q~N 

, a2
~~~

l
’

\ 
ca2q;q)~~a2qb~~c~~;q~~

V 
6 S a, —a, a2b 1q, a2c ’q, 52qN+l q, bc / (a2qb

l;q)~~(a
2qc l;q)~

(a 2q; q)~,, (a 2qb 1c;~~~ g) ,, Ca 2g~~
lb 1~ ~~ Ca 2q~~

1c
3. ;q) _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Up until now no assum~~tions on q have been mad e other than the implicit assumption

that there are no zeros in the denominator . To make the calculations that follow a

little easier we will assume jqj < 1 and define (a mq )  by

C2.4) . (a ;q) — ~T (1 — aq~ ) .

Since we are only dealing with polynomials it is easy to reeove this restriction on q.

A proof of (2.3) naing orthogonal polynomials is given in (11 . One need , to set

bc — aq in the formula in Theo ram 12. A proof i. also given in (10, (3.3, 1.4)).

However in the appendix in [10] this formula is given with some *i.pr int*.

—4— ‘ S
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Using (2.3) in I gives

‘in’

qI 2 J (_ ~ ) m (~ q;q) (q
_n

;q) (qn+l~~ ;q) ( ~~ q;q) (~ - cdq 2
~’~

1)
~~~ 

din 
k 0  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - cdq)

K 2 
k 

__m+l 2k+2 -L -l -l -m -l —in k 2 
- 

2 -k(cq 7~~)~~(cdc ,q) ,(a n c;q) ,,Ca dq ;g) (b q ;q) C-1) q Cab)
-l k+1 -l k+l k—m+1 -1 -1 -k-rn-i

~~~~~~~~~~~~~~~~~~ cdq ;q) ,,(b cq ;q) (dq ;q) (a b q

q (_l)m(a
_1
~~1~;q) (5 1dq ;q) (~~1q m;q) (~dq2;q) (cq;q)

— 

d~’(a~~ cdq;q) ,, (b~~cq; q) ,,(dq; ~~ (a~~b~~q~~~ 1; q)

(q ~~~~~~ ab;q)~~(cq ~~~~~
L

k 0  (q;q )~~(ab~ ~~~~~~~~~~~~

This ~um is a bala nced ?2 ’ and so can be summed using

• q~fl, aqit , b Cc/b; q)~~Cd/b ; q ) b ”
(2. 5) 

?2 
~~~, d 

q,q, Cc ;q) Cd ;q)

when abq — cd. The final result isT
—l -in m+l nA(abc ~~~~~~~ ;q)~~Ccq

Cabq~~
2;q) (cq;q)

where A is the coefficient of the sum above . So I = 0 for in — O , l , . . . ,n  - 1.

The value of the sum in (2.1) when in — n can be found from this sum . However

it is elsier to obtain it from resul ts in the next section.

-5—
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3. Recurrence relation. If p (x) are orthogonal with respect to a positive measure

therm

(3.1) xp~ (x) A~~~÷1
(X) + B p C x )  + C p 1

(x) ; p 1
(x) 5 0

If the measure has infinitely many points of support then (3.1) holds for n = 0,1

When there are only finitely many point masses, say N + 1, then (3.1) holds for

n — O,l ...,N - 1, aM when n = N the zeros of pN+l
(X) determine the location

• of the point masses. For a proof of this old fact see [3]. It is implicit in some

of Tchebychef’s work on continued fractions. We have shown that {p~ (~~Cx))} is

orthogonal, so (3.1) becomes

V 

C3.2) u ( x ) p Cu ( x ) ) — A p ÷1
(~~C x ) )  + B p C ~~CX)) + C

nPn_1
(1J (X))

When x = 0, p (~~(0)) = 1, so (3.2)  can be written as

V C3.3) [ii Cx) — IJCO)JPnUI
CX)) = A(P~~1

Cu (x)) — ~~ (uCx))] — C~ (P~ (u(x)) —

A is &~etermined by equating the highest powers of u (x). It is

V 
(3 4) A = 

(1 — abq’~
’
~~) Cl — aq’~~~) Cl — bdq’~~~) (1 — cg1

~~
l)

n Cl — abq2’
~~~) Cl -

since
(n

-n n+1 a n~~ 2
Cq ;q) (q ab;q) q (-1) q

(3. 5) ~~CuC x ) ) = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~mcH ’~ + lower terms

The easiest way to f ind C is to first simplify (3.3) . A routine calculation gives

V -n ~n+2 -mc x+1
C3.6) Pn+l~~

1 (X)) — Pn
CU CX)) = 

—g Cl — q  
aq) (l — bdq) (i — 

;
q

~ cd)

—n n+2 x+l x+2
q ,q ab . q  , q  cd

q,q .

‘~ aq2 , bdq2 , cq2

So (3.3)  can be rewritten as

-6-
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-n n+1 —x x+l
— •~ 

q , q ab , q , q cd~ q,q
aq, bdq , cq

-n 2n+2 -n n+2 —x+ l x+2- A q  (1 - q ab) q , q ab, q , q Cd
= 

Cl — aq) Cl — bdq) Cl — cq) 
aq 2 , Ix~q

2 , eq2 ~ q,q

V -n+l 2n -n+l n+l -x+l x+2C q C l - g a b )  q , q  ab, q , q  cd
+ (1 - aq) Cl — bdq) Cl - cq) 

aq2 , Ix~q
2 , cq2

• Now there are a couple of ways to proceed . If x = 1 then all the 
4~3 5 can be

evaluated , but the reduction is more complicated than it has to be. Another way is
S 

to set q X 
— eq and use ( 2 . 5 )  on all the series . This calculation gives

(3 8) = 
cdq (l - qn ) (3. - ~~n ) (1 — ~~~~ lgn ) Cl - ad~~ q~ )

fl (3. - abq 2
~~ ’) (1 - abq 2n )

Formula ( 3 . 2 )  is an analogue for balanced 4~ 3
1 s of one of the contiguous relations

of Gauss. Set

a ,b ,c ,d
S ; q,q

• - e, f ,g

where abcdq = efg and one of a, b , c or d is q fl~ Also set

—laq, bq ,c,d
q,q

e, f,g

Then (3 .2 )  becomes

(3.9) efgCl — b} Ca — e) (a — f) (a — g) (aq — b)~P ( a— ,b+)

~a 2efg( l  — e) (1 — d) (aq - b) (a — bq) 1
+ — e fg ( l  — b) ( a - e) (a - f )  (a - g) (aq - b)

L + a2cdqCl - a) (e - b) (f - e) (g - b) Ca - bq)J

— a2cdq Cl — a)Ce — b) (f — e) (g — b) (a — bq)~~(a+ ,b— ) = 0

or

—7—
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(3. 10) e fg( l  — b) (a — e)(a — f ) (a — g)(aq — b) (*P (a— ,b+) —

2
+ a cdq(l — a) (e — b) (f — e) (g — b) (a - bq) (~ —

+ a2efg(l — e) (1 - d) (aq — b) (a — bq)~ = 0

To find the sum of (2.1) when n = a, call it h . Then
a

A h 1 ~ u ( x )P (I~
(x ) ) P n+i (m 1 (X) ) w (X )

* and

.~ .
-

~ 
Ch 1 

= 
~ 

)l (X)P
n

(P(X ) )Pn_1 CU (X ) ) W ( X )

= A  hn—l n

so

C C - . . C
(3. 11) h —a-- h = = 

n 1 h -
a A n-I. A “~~A 0

n—l n—l 0

The 6~5 
sum (2.3) gives

2 Ic ~ Id % I 1
V 

- 
(cdq ;q) ;qj ;;qJ~~~~;q =

C3.l2) h0 
— 

~~ • , ~ 
(~~ . (d )

a ic ’tb ‘ = =tabq ‘

• and so

h — 

(q;q) (l - abq) (bq; q) Cad 1q;q)~~(abC lq q ) ~~(Cd q) 
h— 

( abq; q) ~~(l  — 5~~ 2n+ l) ( aq;q)~~Cbdq;q)~~(cCP~~)~ 
0

Once this formula has been found some of the mystery of Section 2 can be removed .

It is natural to ask where the weight function came from . Observe that

I -n n+]. -x x+l
• ,q , q  ab, q , q  cd

4 31 q,q
aq, bdq, cq

is symmetric in a and x when (a,b) is changed into (c, d ) .  This symmetry carries

over to w(x) and h ,  that is w (n)  is just h0/h with (a, b) interchanged

with (c ,d) . The reason for this is that e matrix that is orthogonal by rows is also

orthogonal by columns . The usefulness of this rmnark was mentioned by Karlin and

McGregor [9) in connection with the Hahn and dual Hahn polynomials. Also see Eagleson

(6] . In fact this is how we found the weight function. However we could not give a V

—8 —
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proof by this method without first proving the recurrence relation (3.3) directly .

• This would be very tedious, so it is preferable to prove the orthogonality directly.

To show from the recurrence rulaUon that the masses must be located at x = 0,l,...,N,

• observe first that A
N 

— 0 , since one of aq, bdq and cq was assumed to be q N

For definiteness take 3~~q = ~~~ The other cases are handled in a similar fashion.

Formula (3.3) will hold when n — N if we can show that

(1 — q X ) ( 1  — q
X5~~cd)p~ Cp (x)) = CN[PN (1i (x)) —

V 
Soth sides vanish when x = 0, since p C ~~(0)) = 1. Use (3.6) on p

~
(u (x)) - pN_l (lJ (x))

and the value of C
~ 

given in (3.8), to see that this is equivalent to

q
N+lab q~x, qX+lcd 

— 
cdq(1 — q

N) 
(3. — ~~~ a - ~~~~~~~ (1 - ad~~q

N)
- “ 3~2 

q,q — 
2N 2N+laq, cq Cl— abq )Cl— ab q

N+l l—x x+2
(_g l N) (1 - abq2~5 

q ab, q , q cd

(1 — aq) (1 — bdq) Cl — cq) 2 2 • q,q
aq,cq 

S

when x = l,2,...,1~. For the series is terminated by q~~
C , so it is correct to

replace the factors (q N;q)~ /(q
N
;q)~ by 1, since they do not vanish. Since

x = l,2,...,N the series in (3.13) can be summed using (2.5). Again a simple c&cula-

tion shows that (3.13) holds for x = 1,2 N. Thus the recurrence relation (3.2)

holds when n N and x = 0,l,...,N. Therefore the point masses must be located

at x = 0,l,...,N.

V — 9.. 



4. Summary and miscellaneous results. For ease of reference we state the two main

results again:

N
(4.1) p (mi (x);a,b,c,d;q)p (u(x);a,b,c,d;q)W(x)

a m
- • x 0

5
,

6m, nhn aq, bdq or cq — q
_N

where

—n n+l -x x+lq , q  ab, q , q  cd
- 

. (4 .2)  p~ C u C x ) ; a .b ~c~d;~~) = 
4~ 3 

; q,q
aq, bdq, cq

—x x+l
(4.3) ~‘(x) = q + q cd

S 2x1-1
(cdq;q)~~(l - cdq ~~~~~~~~~~~~~~~~~~~~~~~~

(4.4) w(x) —l •-l
- cdq) (a cdq;~~)~~(b cq; q)~~(d~ ;q)~~(ab~ )

(q; q) (l — abq) (bq;q) (ad 1q;q) (abc~~ q; q) (cdq)~
(4.5)  

n a a
n (abq;q)~~(l - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(cdq 2 ;q) (a b ~~ c;q) (a ld; q) (b h ;q) , 
.

(a cdq;q),,(b cq;q),,(dq;q),,Ca b q ;q),,

These infinite products look like they must have < 1 before they make sense.

However , since one of aq, bdq or cq is q
N these products all reduce to finite

products. For example, when eq ~~~ then

2 —l —1 —1 —l 2 —l Nil N+l —1
(cdq ;q) ,,(a b c;q) ,,(a d;q) ,, (b ;q) , ( cdq ;q) ,, (b cq ;q) ,~(dq ;q) ,,(b ;q) ,

—l —l —l —1 — 1 = 2+N —l —l N
(a cdq; q) ,, (b cq; q) ,,(dq ;q) ,, (a b q ;q) ,, ( cdq ;q) ,,(b cq;q) ,,(dq; q) ,,(b q ;q) ,

= 
~~~~~~~~~~~~~~~~

(b

(4.6 )  —(1 — q X ) ( 3 .  — ~~~~~~~~~~~~~~~~~~~~~~~~~~

— A p
÷1

(u( x) ;a,b,c ,d;q) - (A + C ) p (p (x);a ,b ,c,d;q)

+ ~~~~~~~~~~~~~~~~~~~~~~~ ,

-10—



S1~ 
!~ V

where p
1
(u(x);a ,b,c,d;q) E 0 and

• 4 7 A = 
(1 - abqn+l) (1 - aqn~~) Cl - bdqn~~) (1 — cqn~~)

n 2n+l 2n+2
(1—abq )(l—ab q

V 
(4.8) C = 

(1 — qfl) Cl - ~~n) (c - ~~~n) Cd - aqa)
n 2n) 2n+1( 1 — a b q  (l-abq

When aq, tx~q or cq is q t4 
then (4.6) holds for n = 0,1,.. .,N - 1 and all mc

S if the basic hypergeometric series that define P~(~~(x)) are assumed to terminate so

that p (J(x)) is a polynomial of degree n, and to hold when n N when

• x = 0,1 N. When none of aq, bdq or cq is equal to q~~ then (4.6) holds for

all x for n = 0,1 

For the polynomials p (~i(x)) to be orthogonal with respect to a positive measure

it is necessary and sufficient that

(4.9) A C > 0
n-i n

See (7, Chapter II, Theorem 1.5]. If (4.9) holds for n = 1,2 then the measure

• has infinitely many points of support; when it holds for n = i,2,...,N then the

measure can be taken to have support on N + 1 points. In this paper we have only

considered some cases when the measure is purely discrete and is supported on a finite

set of points. In a later paper we will treat the general cases where the measure has

both an absolutely continuous part and a discrete part.

There are many special cases of the orthogonality relation (4.1) which are interest-

ing. When d — 0 and eq = q the polynomials were discovered by Hahn, and their

weight function was found a couple of years ago by Andrews and Askey . Delsarte ( 4 ) ,

Du nkl [5] and Stanton Il l]  have considered special cases of these polynomials. When

b = 0 the polynomials are called dual Hahn polynomials. The orthogonality when aq =

was also found by Andrews and Askey .

Another interesting special case is Stanton’s q-analogu e of the Krawtchouk

polynomials. These are

—11—
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K C q ;c ,q q~ = 3~ 2 —N q,q -

0 , q

To obtain these from the q—Racah polynomials (1.7) f i rs t  set c = d 0 and aq = q~N

then set b — ~cq!~~ so ab — -c. The weight function is then

(q~N ;q) 1 X

(q;q~~ ~ eq

When q -
~ 1 this converges to X (~.r(..l)~

c 
= (N)(!)

mc
, which is the weight function

for the Krawtchouk polynomials.

A word of caution about characterization theorems needs to be said. There are

many theorems that say “the classical polynomials are the only polynomials to have a

given property”. Such theorems are often misleading . For example, Eagleson (6] showed

that the Charlier , Krawtchouk and Meixner polynomials are the only polynomials that

are self dual. He is able to prove this theorem and yet miss the polynomials

p ( ~~(x) ;a, b, a ,b ) ,  which are clearly symmetric in a and x because his definition

of self dual or syunetrizable is too restricted. A characterization theorem that leads

5 to new orthogonal polynomials is usually interesting , one that says the classical

polynomials are the only polynomials with a given property are usually much less

interesting and if they keep people from looking for new polynomials they are harmful .

—12—
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